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Finite-size effects on the approach of complete wetting 

M J P Nijmeijer and H J Hilhorst 
Laboratoire de Physique Thtorique et Hautes Energies, B h e n t  211, URiversite Paris-Sud, 
91405 Orsay, France 

Received 1 December 1994 

Abstrad. We perform an exact model calculation of the unbinding transition of a one- 
dimensiond interface from a substrate on the approach of two-phase ccexisknce. This Uansition 
is modelled in a solid-on-solid (SOS) model with discrete columns which have a partition function 
calculated for a finite substrate area A. In the limits of large A and a small distance IAMI to 
coexistence, the partition function h o m e s  a function of the the scaling variable x = lA@A. 
The interface-toabstrate dishnce 1 diverges as I c( IApl-B, with ,8 = -113 if the hvo limits 
aretakenatconstantordivergingx. Ifx vanishes,afinite-sizeregimeappearsin whichp = -1. 
A related interface model in continuous space was studied earlier by Kroll and Gompper and 
our scaling functions are identical to theirs. 

1. Introduction 

Consider a substrate which in contact with a coexisting liquid and vapour phase prefers 
to be covered by the liquid phase. If this substrate is in contact with a vapour phase 
which is undersaturated but close to the coexistence region, a microscopic liquid layer will 
already appear on the substrate. This layer will grow thicker as the vapour approaches the 
coexistence pressure and density such that, when the vapour has attained coexistence, a 
bulk liquid will have formed on the substrate. This growth mechanism is called complete 
wetting [l-31. 

The divergence of the layer thickness 1 in complete wetting is characterized by an 
exponent p: 

I ci 1ApI-P (1.1) 
where IApl is the difference between the chemical potential of the undersaturated vapour 
and the chemical potential at liquid-vapour coexistence. This divergence has been studied 
extensively, mostly in the context of interface models such as the solid-on-solid (SOS) model 
in which the mechanism that drives the interface away from the wall becomes apparent [l- 
31. That is, let j b e  the space-averaged height of an interface configuration and only allow an 
interface to fluctuate around i while keeping f fixed; the substrate will limit the extent of the 
local interface fluctuations around i since the interface cannot penetrate the substrate. This 
cut-off on the fluctuations will disappear with increasing f but the resulting gain in entropy 
has to be balanced by the cost of forming a liquid layer under thermodynamic conditions 
that favour the vapour phase. Such simple free-energy considerations predict p = -1/3 
for d = 2 and p = 0 for d = 3. (The latter value implies a logarithmic divergence of the 
layer thickness. These predictions are for the case when there are no long-ranged forces 
and no random impurities in the system.) The predictions are supported by various model 
calculations [l-31 while we know of one affirmative experiment in d = 3 [4]. 
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These free-energy considerations assume that the interface collides with the substrate 
no matter how far away i is from the substrate. However, in the case of a finite substrate 
area A the extent of the interface fluctuations around i is limited by A when i is sufficiently 
far away from the substrate. Therefore, interfaces with a space-averaged height 1 far from 
the substrate will no longer collide with it. The entropy due to local fluctuations around 
i will be the same for all r sufficiently far away. Hence, the local fluctuations do not 
affect the relative statistical weights of such positions 1. We thus expect that, under these 
circumstances, the thickness of the liquid layer can be calculated as though the interface 
were rigid and completely flat. The divergence of the thickness of such an interface can 
trivially be calculated (as we will do in appendix A) and proceeds as the inverse of IApI, 
i.e. p = -1. 

The entropy argument suggests that the average interface height of a rigid, flat interface 
forms a lower bound on the average height of an interface that can fluctuate around its space- 
averaged height r. This can be proven rigorously for an SOS model in arbitrary dimensions, 
as we show in appendix A. 

We now distinguish between two situations in which the limit lApl -+ 0 can be taken: 
one can first take the limit A + CO followed by [A& --f 0 or one can take the limit 
lApl -+ 0 at finite A. In the first case we expect to observe the ‘classical‘ value for ,3 as 
the intrinsic width of the interface is no longer bounded by A; the interface will thus collide 
with the wall no matter how far away from the wall its space-averaged position lis. In the 
second case we expect p = -1 as the interface will no longer collide with the substrate 
for IApl small enough. In the more general process of taking the limits IApI + 0 and 
A + 00 simultaneously, we expect that if A increases quickly enough we will stay within 
the classical regime; if, however, A increases too slowly we expect to crossover into the 
non-classical or finite-size regime. 

The existence of two such regimes has been observed before by Kroll and Gompper [5] 
in the framework of a renormalization-group (RC) calculation of wetting transitions. The 
two regimes have been demonstrated in an exact solution of a one-dimensional interface 
model in continuous space [5]. We aim to demoriseate this finite-size effect in an exact 
solution of a one-dimensional SOS model with discrete columns. This is the subject of the 
next section. Concluding remarks are given in section 3. 

2. Complete wetting in a one-dimensional SOS model 

We solve a one-dimensional SOS model with continuous column heights in the presence of 
an external field H (note that H plays the role of the chemical potential difference lAp1 
[1-3]) with periodic boundary conditions. 

The Hamiltonian of the model reads 
N N 

 hi))= ~ C I h i t r  - h i I + ~ C h i  ( 2 . 0  
i = I  i= l  

where [ h i }  is a set of N continuous height variables in the interval 0 < hi 
and J and H are positive. 

CO, hN+I = hl 

The partition function is given by 

Z = l m d h l  ...l mdhr, eXp{-pz} (2.2) 

where ,3 = I l k s  T and ks is Boltzmann’s constant (unfortunately, @ also denotes the wetting 
exponent but there will he no danger of confusing the two). 
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The partition function can be written as the trace over the Nth power of a transfer 
ma& 

Z = l w d h  TN(h, h) (2.3) 

with 

with hl = h, hN+I = h’ and 

T(h, h‘) = exp{-g(Jlh - h‘l + Hh’)]. 

(2.4) 

Note that we may symmetrize the transfer matrix but the choice of (2.5) turns out to be 
equally convenient for our purposes. To calculate the trace we determine the eigenvalues A 
of T from the eigenvalue equation 

i m d h ’  T(h, h’)@(h’) = A@(h). (2.6) 

This integral equation can be turned into a differential equation [6] by differentiating it 
twice with respect to h, employing 

a 
-exp(-gJlh -h‘l) = -pJsgn(h - h‘)exp{-gJ)h - h‘)) 
ah 

az 
-exp{-gJlh-h‘l) = ( - 2 g J S ( h - h ‘ ) + g 2 J z ) e x p ( - g J l h - h ‘ l l .  a=h 

(2.7) 

(2.8) 

With (2.8) we find that @ satisfies 

-2j3Jexp{-pHh}@(h) + gZJZA@(h) = h@”(h) (2.9) 

where a prime stands for differentiation with respect to h. Boundary conditions at h = 0 
for this differential equation can be constructed by differentiating (2.6) once with respect to 
h and taking h = 0. We furthermore impose that @ vanishes for large h. In this way we 
have specified @: apart from a multiplicative constant, by 

J @ ( h ) = O  

(2.10) 
2> 

lim @(h) = 0 

which has to be solved on the positive axis h =- 0. 
The differential equation can be transformed into a Bessel equation by the substitution 

(2.11) 

Note that, from an analogy with the Schrodinger equation, we do not expect solutions for 
A e 0: this would be analogous to looking for bound states of a particle which experiences 
a purely repulsive external potential. However, we can include the possibility o f  such 
solutions by allowing x to be complex. 
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In terms of x ,  (2.10) reads 

XZ*.“(X) + x@‘(x)  + ( 2  x - - ::1) * ( x )  = 0 I 
(2.12) 

which has to be solved in the interval 0 < x < m / m .  
The general solution of this differential equation is a linear combination of J, (x)  and 

J-&) with J ,  the Bessel function of order U and U = 2J/ H [7]. However, any combination 
with J-, violates the boundary condition at x = 0 as J-,  diverges at x = 0, whereas 
J,(O) = 0 so @ = cJ, with an arbitrary multiplicative constant c. 

The s ectrum of A values can be inferred from the boundary condition at x = 
ApH2.  With the identity 

U 

X 

JWSe 
J: = - - J y  i- J,+j 

this boundary condition becomes 

(2.13) 

(2.14) 

i.e. the eigenvalues I are given by the zeros of Since U is positive, Jv-j has an infinite 
number of simple real zeros. If we denote the positive zeros as ( jv - l , j ] ,  i = I ,  2. .  . . , with 
0 < ju-l,l < jv-1,2 < . . . (the negative zeros are given by { - jU- l , i ] )  then the spectrum of 
the eigenvalues is 

(2.15) 

where A ]  > hz > . . . . 

the eigenvalues: 
The trace of the Nth power of the transfer matrix is the sum over the Nth powers of 

(2.16) 

We will now inspect the sum in (2.16) in the limit H -+ 0 and N -+ 03. Since the 
limit H -+ 0 corresponds to w -+ 00 we inspect the behaviour of the ( j v - l , t ]  for large U. 
The positive zeros of Ju can be expanded as [SI 

j ”,, . -  - - + 0(~-1 /3)  (2.17) 
where the ai are the zeros of the Airy function. These are all real, negative and ordered as 

Substituting w - 1 for w in (2.17) we can expand the sum in (2.16) term by term as 
0 > > a2 > . . . 181. 

Eliminating w in favour of x = N/u2l3 and taking the limit N -+ 63 yields 

(2.18) 



Finite-size effects on complete wetting 2137 

In the limit x -+ CO the first term of the sum in (2.19) will dominate and hence 2 

(2.20) 

whereas in the limit x + 0 the sum will be determined by the behaviour of the terms for 
large i. In this limit we can replace the ai by their asymptotic expansion for large i [SI: 
ai N - (3~ i /2 )2 /~  + 0(i-’/3) and replace the sum in (2.19) by an integral 

behaves as 

~ ( x )  N e x p { ~ ~ / ~ a l x ) ( l +  ~(exp{22/3(a2 - al)x))) for x + CO 

2 ( x )  N dy e x p [ - ( 3 ~ y ) ~ / ~ x }  for x + 0. (2.21) LW 
The integral is easily calculated and gives 

for x + 0. (2.22) 
1 1  

4 ~ 1 / 2  x3/2 2 ( x )  N -- 

The average height I of the interface can he calculated as 
i a  

I = IogZ. B N  a H  
With 

a Z N  1 a _ = _ _ _ _  
a H  3(2J)2/3 HI13 ax 

we obtain in the limits H + 0 and N + CO, while keeping x fixed, 

(2.23) 

(2.24) 

N + c u  
_ _  l o g 2 ( x )  for (2.25) 

x = N/wZ/’ fixed. 

2 i a  
38(2J)2/3 H 1 l 3  ax 

I = -  

This scaling form is the same as that obtained from the RG calculation of 151 (this can be 
seen from the authors’ expression for ( 2 4 )  at the top of page 437 with q = 1, I = 112, 
I,, = 312 and t,, - h-2/3).  This shows that 1 diverges as I - HB with B = -1/3 when the 
limits N -+ 03 and H + 0 are taken at constant x .  

We obtain the same exponent j3 = -113 in the ‘classical regime’ in which we first let 
N go to infinity at fixed H ,  i.e. x -+ CO, before we take H to zero. From (2.20) we find 

N - + w  
for H + 0 (2.26) 1 x = N / v 2 I 3  -+ CO. 

2al 1 1 y 
3BJ2/3 H’/3 

In the ‘finite-size regime’ H + 0 at fixed N ,  i.e. x -+ 0, we obtain from (2.22) 

(2.27) 

and thus an exponent 
A solution of a spatially continuous version of the one-dimensional SOS model has been 

proposed previously by Kroll and Gompper [5]. The authors do not pursue the calculation 
to the point that their expression for Z can be compared with (2.16) or (2.19) directly. 
We show in appendix B, however, that their expression is, apart from a different metric 
prefactor, equal to (2.19). This confirms the expectation that finite-size scaling functions 
are universal for this transition. 

= -1. 
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3. Conclusions 

We have demonstrated, by means of an exact calculation, the appearance of a finitesize 
regime in the unbinding of a one-dimensional interface. 'Ne calculated the scaling functions 
for the partition function and the layer thickness and showed that they depend on a single 
scaling variable only. A previous calculation [5] on a slightly different interface model 
yielded the same scaling functions and, apart from a metric prefactor, the same scaling 
variable. This correspondence confirms the universal character of the transition, Both 
models illustrate the predictions of a RG calculation [5]. 

We have proven that in a system of finite size the interface height diverges at least as 
fast as a l / lAp[  in dimensions larger than two. This shows that the crossover from the 
usual (infinitesize) regime to a finite-size regime also occurs in higher dimensions; this is 
because the infinite-system exponents predict a slower divergence. 

M J P Nijmeijer and H J Uilhorst 
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Appendix A. 

We prove that the average height above a substrate of a SOS interface is always larger than 
the average height of an interface that is held completely flat. 

The Hamiltonian of a d-dimensional SOS model is a straightforward generalization of 
(2.1): 

where the height variables {hi) are now defined on a d-dimensional square lattice and the 
sum over (i, j )  is over all the nearest-neighbour columns in the lattice. The lattice contains 
A = N d  columns and has periodic boundary conditions in all directions. 

The probability that a randomly chosen interface configuration has an average height h 
is 

w(h) exp(-pNdHh} 
S F d h  w(h)exp{-pNdHh} 

P(h;  H) = 

(because we will keep N fixed in this appendix we do not list it as an argument of P )  with 

in which the stars indicate that the integration is restricted to those configurations (hi] that 
satisfy 
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Since the number of configurations that satisfy (AA) will become larger when h is chosen to 
be larger and the Bolzmann factor in (A.3) is invariant under translations of a configuration 
normal to the substrate, we have 

aw(h) > o, 
ah 

The probability that an interface that is forced to remain flat is at a height h is 
exp( -6 Nd Hh] 

lrdh exp(-,9NdHh)‘ 
p d h ;  H) = 

The average heights of the two types of interface me 

and we can express the difference in average heights as 

Due to (AS) and the fact that p~ is a simple exponential with a decay length proportional 
to 1/H, we know that 

(A.lO) 

and thus 

I > I f l .  (A.11) 

From this it follows that in the limit H -P 0 at N fixed, 1 will diverge at least as fast as 
1/H, i.e. ,3 < -1. From the physical picture sketched in the introduction it may safely be 
concluded that ,9 = -1 and that (A.8) is the exact leading-order behaviour in the finite-size 
region (as is true for the one-dimensional model, see (2.27)). 

Appendix B. 

Kroll and Gompper [SI previously solved a one-dimensional SOS model in continuous space. 
We show that their solution for the partition function has the same form as the scaling 
function (2.19) for our model with continuous height variables but discrete columns. 

In [SI, the surfaces are represented by continuous functions h(x), where h represents 
the height of the surface above the substrate at the position x along the substrate. For 
the case where the onedimensional interface moves in an external field U ( h )  = Hh the 
Hamiltonian reads 

where the substrate has a length L and the integral over the first term gives the surface 
tension U times the area of the surface (the prime denotes differentiation with respect to x ) .  
This term is expanded with the argument that only the long-wavelength fluctuations with 
miId variations of h will be relevant. Thus one obtains 
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omitting the h-independent contribution a L. 
The partition function Z is a functional integral of the functional exp(-p‘Fl[h]} over all 

contours that satisfy the periodic boundary condition h(0) = h(L) and respect the presence 
of the substrate: h(x) > 0. Gompper and Roll calculate this functional integral [9,10] as 

z = Cexp{-LBEi} (B.3) 

M J P Nijmeijer and H J Hilhorst 

i 

where the Ei are the eigenvalues of a Schrodinger-type equation: 
1 

ZPO 
#(h)  + B ( H h  - Ei)4i(h) = 0 03.4) 

and the boundary conditions are &(O) = 0 and limh+o$i(h) = 0. The solutions of (B.4) 
are Airy functions: 

&(h) Ai((2g2~H)’”h +ai) (B.5) 

_ _  

where the [ U , ]  are the zeros of the Airy function Ai, ordered as 0 > a1 > a2 > . . . . Hence, 
the partition function becomes 

m 

z = C e ~ p ( P / ~ a i x ’ )  
i = l  

with the variable x’ defined as 

(B.7) 

The partition function (B.7) is of the form (2.19) and the variables x and x‘  contain the 
characteristic combination NH2l3 and L H2J3 respectively, although with different metric 
prefactors. 
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